Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5941, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741818

RESUMO

The ability of the pluripotent epiblast to contribute progeny to all three germ layers is thought to be lost after gastrulation. The later-forming neural crest (NC) rises from ectoderm and it remains poorly understood how its exceptionally high stem-cell potential to generate mesodermal- and endodermal-like derivatives is obtained. Here, we monitor transcriptional changes from gastrulation to neurulation using single-cell-Multiplex-Spatial-Transcriptomics (scMST) complemented with RNA-sequencing. We show maintenance of pluripotency-like signature (Nanog, Oct4/PouV, Klf4-positive) in undecided pan-ectodermal stem-cells spanning the entire ectoderm late during neurulation with ectodermal patterning completed only at the end of neurulation when the pluripotency-like signature becomes restricted to NC, challenging our understanding of gastrulation. Furthermore, broad ectodermal pluripotency-like signature is found at multiple axial levels unrelated to the NC lineage the cells later commit to, suggesting a general role in stemness enhancement and proposing a mechanism by which the NC acquires its ability to form derivatives beyond "ectodermal-capacity" in chick and mouse embryos.


Assuntos
Ectoderma , Células-Tronco Neurais , Animais , Camundongos , Crista Neural , Camadas Germinativas , Galinhas
2.
Nat Commun ; 14(1): 4499, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495603

RESUMO

The molecular mechanisms that coordinate patterning of the embryonic ectoderm into spatially distinct lineages to form the nervous system, epidermis, and neural crest-derived craniofacial structures are unclear. Here, biochemical disease-variant profiling reveals a posttranslational pathway that drives early ectodermal differentiation in the vertebrate head. The anteriorly expressed ubiquitin ligase CRL3-KLHL4 restricts signaling of the ubiquitous cytoskeletal regulator CDC42. This regulation relies on the CDC42-activating complex GIT1-ßPIX, which CRL3-KLHL4 exploits as a substrate-specific co-adaptor to recognize and monoubiquitylate PAK1. Surprisingly, we find that ubiquitylation converts the canonical CDC42 effector PAK1 into a CDC42 inhibitor. Loss of CRL3-KLHL4 or a disease-associated KLHL4 variant reduce PAK1 ubiquitylation causing overactivation of CDC42 signaling and defective ectodermal patterning and neurulation. Thus, tissue-specific restriction of CDC42 signaling by a ubiquitin-based effector-to-inhibitor is essential for early face, brain, and skin formation, revealing how cell-fate and morphometric changes are coordinated to ensure faithful organ development.


Assuntos
Crista Neural , Ubiquitina , Encéfalo , Ectoderma , Transdução de Sinais
3.
Res Sq ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747797

RESUMO

The ability of the pluripotent epiblast to contribute progeny to all three germ layers is thought to be lost after gastrulation. The later-forming neural crest (NC) rises from ectoderm and it remains poorly understood how its exceptionally high stem-cell potential to generate mesodermal- and endodermal-like cells is obtained. We monitored transcriptional changes from gastrulation to neurulation using single-cell-Multiplex-Spatial-Transcriptomics (scMST) complemented with RNA-sequencing. Unexpectedly, we find maintenance of undecided Nanog/Oct4-PouV/Klf4-positive pluripotent-like pan-ectodermal stem-cells spanning the entire ectoderm late in the neurulation process with ectodermal patterning completed only at the end of neurulation when pluripotency becomes restricted to NC, challenging our understanding of gastrulation. Furthermore, broad ectodermal pluripotency is found at all axial levels unrelated to the NC lineage the cells later commit to, suggesting a general role in stemness enhancement and proposing a mechanism by which the NC acquires its ability to form derivatives beyond "ectodermal-capacity" in chick and mouse embryos.

4.
Dev Cell ; 56(24): 3334-3348.e6, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34932949

RESUMO

Centrioles comprise the heart of centrosomes, microtubule-organizing centers. To study the function of centrioles in lung and gut development, we genetically disrupted centrioles throughout the mouse endoderm. Surprisingly, removing centrioles from the endoderm did not disrupt intestinal growth or development but blocked lung branching. In the lung, acentriolar SOX2-expressing airway epithelial cells apoptosed. Loss of centrioles activated p53, and removing p53 restored survival of SOX2-expressing cells, lung branching, and mouse viability. To investigate how endodermal p53 activation specifically killed acentriolar SOX2-expressing cells, we assessed ERK, a prosurvival cue. ERK was active throughout the intestine and in the distal lung buds, correlating with tolerance to centriole loss. Pharmacologically inhibiting ERK activated apoptosis in acentriolar cells, revealing that ERK activity protects acentriolar cells from apoptosis. Therefore, centrioles are largely dispensable for endodermal growth and the spatial distribution of ERK activity in the endoderm shapes the developmental consequences of centriolar defects and p53 activation.


Assuntos
Apoptose , Centríolos/metabolismo , Endoderma/embriologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sobrevivência Celular , Endoderma/metabolismo , Células Epiteliais/metabolismo , Intestinos/crescimento & desenvolvimento , Pulmão/embriologia , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Morfogênese , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/metabolismo
5.
Elife ; 102021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34672258

RESUMO

Craniofacial defects are among the most common phenotypes caused by ciliopathies, yet the developmental and molecular etiology of these defects is poorly understood. We investigated multiple mouse models of human ciliopathies (including Tctn2, Cc2d2a, and Tmem231 mutants) and discovered that each displays hypotelorism, a narrowing of the midface. As early in development as the end of gastrulation, Tctn2 mutants displayed reduced activation of the Hedgehog (HH) pathway in the prechordal plate, the head organizer. This prechordal plate defect preceded a reduction of HH pathway activation and Shh expression in the adjacent neurectoderm. Concomitant with the reduction of HH pathway activity, Tctn2 mutants exhibited increased cell death in the neurectoderm and facial ectoderm, culminating in a collapse of the facial midline. Enhancing HH signaling by decreasing the gene dosage of a negative regulator of the pathway, Ptch1, decreased cell death and rescued the midface defect in both Tctn2 and Cc2d2a mutants. These results reveal that ciliary HH signaling mediates communication between the prechordal plate and the neurectoderm to provide cellular survival cues essential for development of the facial midline.


Assuntos
Sobrevivência Celular , Ciliopatias/embriologia , Anormalidades Craniofaciais/embriologia , Proteínas Hedgehog/genética , Animais , Apoptose , Ciliopatias/genética , Anormalidades Craniofaciais/genética , Modelos Animais de Doenças , Camundongos Knockout , Transdução de Sinais
6.
Elife ; 92020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32840212

RESUMO

During the development of the cerebral cortex, neurons are generated directly from radial glial cells or indirectly via basal progenitors. The balance between these division modes determines the number and types of neurons formed in the cortex thereby affecting cortical functioning. Here, we investigate the role of primary cilia in controlling the decision between forming neurons directly or indirectly. We show that a mutation in the ciliary gene Inpp5e leads to a transient increase in direct neurogenesis and subsequently to an overproduction of layer V neurons in newborn mice. Loss of Inpp5e also affects ciliary structure coinciding with reduced Gli3 repressor levels. Genetically restoring Gli3 repressor rescues the decreased indirect neurogenesis in Inpp5e mutants. Overall, our analyses reveal how primary cilia determine neuronal subtype composition of the cortex by controlling direct versus indirect neurogenesis. These findings have implications for understanding cortical malformations in ciliopathies with INPP5E mutations.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurogênese/genética , Monoéster Fosfórico Hidrolases/genética , Animais , Córtex Cerebral/metabolismo , Feminino , Masculino , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo
7.
Stem Cell Reports ; 1(6): 604-19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24371813

RESUMO

Organ formation and regeneration require epithelial progenitor expansion to engineer, maintain, and repair the branched tissue architecture. Identifying the mechanisms that control progenitor expansion will inform therapeutic organ (re)generation. Here, we discover that combined KIT and fibroblast growth factor receptor 2b (FGFR2b) signaling specifically increases distal progenitor expansion during salivary gland organogenesis. FGFR2b signaling upregulates the epithelial KIT pathway so that combined KIT/FGFR2b signaling, via separate AKT and mitogen-activated protein kinase (MAPK) pathways, amplifies FGFR2b-dependent transcription. Combined KIT/FGFR2b signaling selectively expands the number of KIT+K14+SOX10+ distal progenitors, and a genetic loss of KIT signaling depletes the distal progenitors but also unexpectedly depletes the K5+ proximal progenitors. This occurs because the distal progenitors produce neurotrophic factors that support gland innervation, which maintains the proximal progenitors. Furthermore, a rare population of KIT+FGFR2b+ cells is present in adult glands, in which KIT signaling also regulates epithelial-neuronal communication during homeostasis. Our findings provide a framework to direct regeneration of branched epithelial organs.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Proteínas Proto-Oncogênicas c-kit/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Glândulas Salivares/embriologia , Animais , Linhagem Celular , Proliferação de Células , Células Epiteliais/citologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Glândulas Salivares/metabolismo , Transdução de Sinais
8.
Nat Commun ; 4: 1494, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23422662

RESUMO

Parasympathetic nerves are a vital component of the progenitor cell niche during development, maintaining a pool of progenitors for organogenesis. Injured adult organs do not regenerate after parasympathectomy, and there are few treatments to improve organ regeneration, particularly after damage by therapeutic irradiation. Here we show that restoring parasympathetic function with the neurotrophic factor neurturin increases epithelial organ regeneration after damage. We use mouse salivary gland explant culture containing fluorescently labelled progenitors, and injure the tissue with irradiation. The progenitors survive, parasympathetic function is diminished and epithelial apoptosis reduces the expression of neurturin, which increases neuronal apoptosis. Treatment with neurturin reduces neuronal apoptosis, restores parasympathetic function and increases epithelial regeneration. Furthermore, adult human salivary glands damaged by irradiation also have reduced parasympathetic innervation. We propose that neurturin will protect the parasympathetic nerves from damage and improve organ regeneration. This concept may be applicable for other organs where parasympathetic innervation influences their function.


Assuntos
Epitélio/inervação , Epitélio/fisiologia , Organogênese , Sistema Nervoso Parassimpático/fisiologia , Regeneração , Glândula Submandibular/inervação , Glândula Submandibular/fisiologia , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Epitélio/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurturina/farmacologia , Organogênese/efeitos dos fármacos , Organogênese/efeitos da radiação , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/efeitos da radiação , Radiação Ionizante , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/efeitos da radiação
9.
J Biol Chem ; 284(34): 22898-904, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19561087

RESUMO

Enzymes of the AID/APOBEC family, characterized by the targeted deamination of cytosine to generate uracil within DNA, mediate numerous critical immune responses. One family member, activation-induced cytidine deaminase (AID), selectively introduces uracil into antibody variable and switch regions, promoting antibody diversity through somatic hypermutation or class switching. Other family members, including APOBEC3F and APOBEC3G, play an important role in retroviral defense by acting on viral reverse transcripts. These enzymes are distinguished from one another by targeting cytosine within different DNA sequence contexts; however, the reason for these differences is not known. Here, we report the identification of a recognition loop of 9-11 amino acids that contributes significantly to the distinct sequence motifs of individual family members. When this recognition loop is grafted from the donor APOBEC3F or 3G proteins into the acceptor scaffold of AID, the mutational signature of AID changes toward that of the donor proteins. These loop-graft mutants of AID provide useful tools for dissecting the biological impact of DNA sequence preferences upon generation of antibody diversity, and the results have implications for the evolution and specialization of the AID/APOBEC family.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Desaminase APOBEC-3G , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Citidina Desaminase/genética , Citosina Desaminase/química , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Farmacorresistência Bacteriana/genética , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Mutação , Rifampina/farmacologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...